Uniqueness, reconstruction and stability for an inverse problem of a semi-linear wave equation

نویسندگان

چکیده

We consider the recovery of a potential associated with semi-linear wave equation on R n + 1 , ? . show that an unknown ( x t ) ? u m = 0 can be recovered in Hölder stable way from map | ? ? × [ T ] ? ? ? ? ? L 2 This data is equivalent to inner product Dirichlet-to-Neumann measurement function also prove similar stability result for when there noise added boundary data. The method we use constructive and it based higher order linearization. As consequence, get uniqueness result. give detailed presentation forward problem

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of an inverse problem for the discrete wave equation

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterpar...

متن کامل

Local existence and uniqueness for a semi-linear accretive wave equation

We prove local existence and uniqueness of the solution (u, ut) ∈ C 0([0, T ];H1 × L2(RN )) of the semilinear wave equation utt −∆u = ut|ut| p−1 for 1 < p < 1 + 2 N .

متن کامل

Stability of an inverse problem for the discrete wave equation and convergence results

Using uniform global Carleman estimates for semi-discrete elliptic and hyperbolic equations, we study Lipschitz and logarithmic stability for the inverse problem of recovering a potential in a semi-discrete wave equation, discretized by finite differences in a 2-d uniform mesh, from boundary or internal measurements. The discrete stability results, when compared with their continuous counterpar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2022

ISSN: ['1090-2732', '0022-0396']

DOI: https://doi.org/10.1016/j.jde.2022.08.010